Flooding Dynamic Modeling for Optimized Planning of CORE MPO Transportation Infrastructure Systems

Matthew V. Bilskie, Felix Santiago-Collazo & Brian Bledsoe, UGA, College of Engineering

Clark Alexander, UGA, Skidaway Institute of Oceanography

Scott Pippin & Shana Jones, UGA, Carl Vinson Institute of Government

Ed DiTommaso, Goodwyn Mills Cawood

Goodwyn Mills Cawood

Coastal Ocean Analysis and Simulation Team

UNIVERSITY OF

GFORGI

Presentation Outline

- 1. Project Team
- 2. Project Goal & Overview
- 3. Project Update
 - Committees and Engagement
 - Stormwater Modeling

Team

- College of Engineering
 - Matt Bilskie
 - Brian Bledsoe
 - Felix Santiago-Collazo
- Skidaway Institute of Oceanography
 - Clark Alexander
- Carl Vinson Institute of Government
 - Scott Pippin
 - Shana Jones
- Goodwyn Mills Cawood
 - Ed DiTommaso

Project Goal

To develop a <u>Project Prioritization Tool</u> that assists with optimizing the planning of new and existing infrastructure to improve reliability and resiliency with additional consideration to economic constraints and social inequities.

The <u>Project Prioritization Tool</u> will be synergized with an updated <u>Road Vulnerability Assessment</u>.

Road Vulnerability Assessment & Project Prioritization

- 1. Equity & Livability Objectives
 - Include social vulnerability data
 - Critical Infrastructure
 - Major transportation routes (emergency services)
- 2. Evaluation
 - Develop metrics to inform the Project Prioritization Tool
 - Compound flooding (coastal and rainfall)
 - Sea Level Rise
 - Road classifications & critical facility access
- 3. Financial Stewardship & Project Prioritization
 - Prioritize projects to increase resiliency of transportation infrastructure
 - Include cost, land use, access, and environmental justice

SWMM (Stormwater Management Model

- Simulate runoff quantity & quality
- Good for small homogeneous sub-basins
- Rainfall on a basin \rightarrow Runoff \rightarrow Pipe network \rightarrow Routed to the outfall

SWMM Application

- Assess current vs future conditions
 - How might SLR creep upstream into the stormwater system?
 - How future land use can alter runoff and discharges?
- Develop a toolset to examine stormwater impacts to transportation infrastructure

Data Collection

- Stormwater Infrastructure
 - Outfalls, canals, ditches, pipes, reservoirs, pump stations, tide gates, headwalls, manholes, green infrastructure, etc.
 - Stormwater drainage basins
- Road centerlines
- Land Use Land Cover
- Soil Types

Fell Street Basin

Stormwater Network

Fell Street Basin

- Basin Information
 - 15 sub-catchments
 - 64 junction nodes
 - 2 outfalls
 - Curve numbers: 88-94
- Model Forcing
 - Type 2 cumulative rainfall 24-hr
 - 6.51 in depth, $T_R = 10$ -yr
 - 8.1 in depth, $T_R = 25$ -yr
 - Tide conditions
 - Average amplitude
 - Average amplitude + Intermediate SLR

Average tidal conditions and a 10-yr rainfall event

Fell Street Basin – Example Outfall Hydrograph

Storm Surge Model Domain

1% AEP Water Level (100-yr Return Period)

DEM & Road Network (Elevation, ft)

Road Network (Elevation, ft)

1% AEP Simulated Storm Surge

1% AEP Simulated Storm Surge

Roadway Vulnerability Assessment (348 miles)

Roadway Vulnerability Assessment + 4 ft SLR (627 miles)

Select a category

None

 \equiv

重

	and y man		and in	and the second second	0 4	
⊕ Zoom to 🕂 Pan	₫ 1 of 3 ▷	Pro	The start of		Legend	×
PULASKI ST	~ ×	a diaski st		Arterials		
Road Name: PULASKI ST Local (DOT Class, 8) Total Length: 1,821,13				a. /		
<u>Vulnerability</u> Length (2020) = 264.76 Percent Vulnerable = 14.54% (0.15)	פענ	as Ave Douglas Ave	Maski St	Collectors		
Length (2050) = 568.61 Percent Vulnerable = 31.22% (0.31)				Local		
Length (2075) = 688.62 Percent Vulnerable = 37.81% (0.38) Length (2100) = $1,143.53$ Percent Vulnerable = 62.79% (0.63)	lor	St Taylor St		Taylor St Vulnerable	Roads (2020)	
	on Ave tome of			Vulnerable	Roads (2050)	
Fort AV ^e			George C.M.	Vulnerable	Roads (2075)	
Chimney Creek	740	Lonne A	Sec. S	Vulnerable	Roads (2100)	

Solomo Solomon Ave Depth Above Road Q Search... € Zoom to ↔ Pan Legend X CHATHAM AVE ^ X POLK ST Arterials 1.205280 Depth Above Road Live Oak L PALMWOOD CT 2.444650 Road Name: POLK ST PALMWOOD CT County: Chatham Depth Above Road 2.482190 Elevation of Water Relative to Road (FT): POLK ST High 2.115320 2.115320 Moderate Laurel Ave BEACHWOOD CT General Vulnerability: Low Brewers Ld 2.174050 High **BEACHWOOD CT** 2.184710 11TH ST 1.378870 US Highway 80 VILLAGE PL US Highway 80 2.323030 Old Highway 80 LOVELL AVE 1.169820 VILLAGE PL 2.369190 CHATHAM AVE 2.377130 7TH ST 0.208170 LOVELL AVE 1.976120

Steering Committee, Stakeholder, and Community Engagement

• MPO Technical Coordinating Committee will serve as the Steering Committee ultimately directing and accepting the project deliverables.

 Other interested organizations have been invited into a Stakeholder Group to provide data and technical support as well as direction and input.

• Will also engage the general public through at least one public input session.

Thank You

Matt Bilskie mbilskie@uga.edu

Sub-basins of interest

General Flowpath

Filling the Gap

Correct invert elevation at pipe junctions using an automated approach to fill gaps in data using the minimum pipe slope and surrounding manholes

Missing elevation values in zero and adverse pipe slopes